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ON THE CIRCULATION MANIFOLD FOR TWO ADJACENT LIFTING SECTIONS *

LUCA ZANNETTI t AND ANGELO IOLLO$

Abstract. The circulation functional relative to two adjacent lifting sections is studied for two cases. In

the first casc we consider two adjacent circles. The circulation is computed as a function of the displacement

of the secondary circle along the axis joining the two centers and of the angle of attack of the secondary

circle. The gradient of such functional is computed by deriving a set of elliptic functions with respect both

to their argument and to their period. In the second case studied, we considered a wing-flap configuration.

The circulation is computed by some implicit mappings, whose differentials with respect to the variation of

the geometrical configuration in the physical space arc found by divided differences. Configurations giving

rise to local maxima and minima in the circulation manifold arc presented.

Key words, potential flow, elliptic functions, optimal shape design.

Subject classification. Fluid Mechanics, Applied and Numerical Mathematics

1. Introduction. Considering the growth of research and industrial interest in aerodynamic shape

optimization, we felt that a reference test case amenable to analytic solution and yet complex enough to be

representative of problems arising from real world applications, was lacking. For this reason we propose in

this paper two optimization test cases based on the potential flow solution. The first is represented by the

problem of finding an extremum of thc circulation manifold relative to the flow about two circles, when the

secondary circle and its trailing edge are displaced. The global circulation and its gradient arc computed

by analytical tools. In the second test case, the problem of computing the circulation and its gradient for

the flow about two airfoils, when the second airfoil is translated and rotated with respect to the first one, is

solved.

The solution is determined by a classical analytical technique that requires two steps. The first step,

which is common to both test cases, is the determination of the flow solution in the plane of the two circles.

In the plane of the airfoils only 3 parameters arc varied: the position of the leading edge of the flap (Xs, Ys)

and its deflection O. On the plane of the circles it is shown that there are 6 parameters changing as the flap

is moving in the physical space. Thc six parameters are the modulus and direction of the speed at infinity,

the radii of the the two circles and the angles defining the position of the two trailing edges. Using the

Lagally [1] solution for the flow about two circles, it was possible to compute the analytical differential of the

total circulation about the two circles. The second solution step is the transformation of the two airfoils into

two circles using a Theodorsen transform for the primary airfoil and a Garrick transform for the other. Any

two airfoils can be transformed by this technique. Yet, the mappings used are known implicitly by means of

a FFT. Therefore, for simplicity, the Jacobian of these transformations with respect to the translation and

rotation of the flap is computed by divided differences. Such differentiation can be conducted to any order

of accuracy at a very limited computational cost.
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Optimizationconsistsin defininga functionalwhichrepresentthe cost(or merit)of a solution,as
a functionof the geometricalconfiguration.Theoptimalsolutionis the minimum(or themaximum)of
sucha functional.An optimizationalgorithmis basedon threeingredients:theflowsolver,a routineto
computethegradient,andanoptimizer,i.e.,a strategyto marchtowardtheextremumof thefunctional,
secfor example[2]andreferencestherein.Usingtheexactcomputationof thegradientthat wcpropose
it is possibleto validatetheaccuracyof numericalgradientsobtainedby adjointor sensitivityanalysis
formulations.Furthermore,generaltypedescentalgorithmscanbctestedusingtheexactgradientgivenin
thispaper,in orderto evaluateperformancein thecontextofaerodynamicoptimization.Forexample,the
effectsof localminimaontheperformanceof variousoptimizerscanbe investigated.Therewasanother
attemptat computinganexacttestcasefor thecirculationaboutwing-flapsectionconfigurations[3]. It
wasfoundthat thederivationpresentedthereinisbasedonson_.eerroneousassumptions.In fact,because
of themotionoftheflap,theprimaryairfoilshapeandtheflapshapearedeformed,makingthat testcase
of nopracticalrelevance.

Section2isdevotedtothestudyoftheanalyticalgradientofthecirculationabouttwoadjacentcircles
withgiventrailingedge.A firstexacttestcaseispresented.In Section3themappingfromthetwoairfoils
planeto the twocirclesplaneis sketched.Finally,hc results:'clativeto the secondtest caseproposed,
obtainedbydivideddifferences,arcpresented.

2. The circulation manifold of two adjacentcircles. In this sectionwewill assumethat the
twoprofilesarcindeedtwocirclesforthereasonthat in thiscaseit ispossibleto determinebyanalytical
differentiationthedependenceof thecirculationandhenceof the lift, asa functionof somegeometrical
parameters.

Considertwocircles(Fig.2.1-2.3),thefirstis theunit circle(cnterdat theorigin,thesecondhasradius
rs and center at x = xs on the real axis of the plane z = x + iy. The two circles arc immersed in a potential

incompressible flow. The speed at infinity of such flow is q_ = Iqc_ le in° and the Kutta condition is imposed

at the points Zp and zs, which belong to the primary and secondary circle respectively. They are determined

by _p = arg(zp) and _2s = arg(z_). The solution to this flow field is due to Lagally [1] and Ferrari [4].
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The two circles considered belong to a family of Apollonius circles with focal points at c ÷ b and c - b

on the real axis. The mapping

z-b
(2.2) _ --

C

transforms this Apollonius manifold to another, whose focal points are at u = -1 and p = 1.

Let us exploit the invariance of the complex potential w under conformal mappings, and let us consider

the flow on the transformed plane u. The complex velocity at infinity is

dw dw dz

(2.3) Q* = [Q°c]e-iz° = li_rno_ _-u = zlim_ dz du - ctq°°[e-_°

The bilinear transform

u+l
(2.4) # --

v-1

maps the two circles in the plane z onto two concentric circles with center in the origin• The internal circle,

whose radius is ri < 1, corresponds the primary circle, the external, whose radius is r_ > 1, corresponds to

the secondary circle. The region bounded by the two circles corresponds to the region where the flow field



takes place on z and the point p = 1 corresponds to infinity on the planc z as well as on u.

edges Zp and z_ are mapped to #p = ri cxp(iOp) and #2 = rc exp(iO_) respectively.

Now, the mapping

The trailing

(2.5) A = log#

transforms the region bounded by the concentric circles into a periodic row of rectangles in the plane

A = _ + i_?. We denote by B the rectangle -_ < _ < a and -7r _<_ < 7r, with f/= -logri and a = logrc.

The pcriod of this row of rcctanglcs is 2i7r. Thc primary circle goes onto thc segment _ = -B, -_r _< r1 < 7r,

while the secondary circle goes onto the scgmcnt _ = a, -_r <_ r1 < 7r. The trailing edges are mapped to

Ap = -f3 + iOp, and As = _ + i_.

The complex speed inside B is singular only at the origin A :: 0, which corresponds to infinity in u and

z. The possible singularities can bca pole of order 2, responsible for the far field speed on the physical

plane, and a pole of order 1, relative to a possible vortex at infinity whose intensity is equal to the opposite

of the circulation about the two circles. In addition, thc complex speed, which is periodic in the direction of

the imaginary axis with period 2it, must be periodic in the direction of the real axis with period 2(a + _)

in order to satisfy the impermeability condition at the walls of the two circles. As a matter of fact, the

impermeability condition is obtained by succcssive reflections with respect to the two sides of the rectangle,

so that it is periodic with period 2(c_ + _) in that direction. Therefore, the period is formed by B and the

mirror image of B. We conclude that the complex speed is expressed by an elliptic function with semi-periods

a_ = a + 3 and aJ = irr, and that it has poles of order 1 and 2 located in A = 0 and A = -2_. Hence, thc

complex speed is

dw _2_ *(2.6) dA - [_(A) - _(_ + 2_)] - 2[Q_gg(A) -- Qc_o(A + 2_)] + in

and, therefore, the complex potential is

iF a(A)

(2.7) w = - _ log a(A + 2B) + 2[Q*{(A) - Q,_{(A + 2¢_)1 + iaA

where 4, p, a, arc Weicrstrass functions with scmi-periods w = a + _3, _ = iTr.

The constants F and g are respectively the global circulatio:l and the circulation about the secondary

circle. They are determined by imposing the Kutta conditions

A=A v A=A,

We have

(2.9) r = -4rri( C_ - %) F
Ap-A_ ' _= _Ap-2iC v

whcrc

(2.10)

C_ = QLp(A_) - Qoop(A_ -- 2fl)

C, = QLp(Av) - Q_p(Ap + 2/3)

A_ = _(A_) - _(A_ + 2B)

Ap = ((Ap) - ((Ap + 2B)



2.1. Differentiation. TwoadjacentairfoilscanalwaysbemappedusingtheTheodorsen-Garricktrans-
formontotwocirclesbelongingto anApolloniusfamilyof circlesonthecomplexplanev, with focal points

at v -- -1 and L, -- 1. When either the geometric or the flow configuration of the two airfoils changes, 6

parameters may change on the plane of the two circles

(2.11) [Q_[, /30, a, /3, 0_, Op

These parameters, in turn, determine the circulation F (see Eq. (2.9)) and hence the lift. Consider the

problem of two adjacent rigid airfoils, the lift is a function of 4 parameters: the angle of attack and the three

degrees of freedom of the second airfoil (every geometric or flow configuration can be reduced to the case of

fixed primary profile and qo_ -- 1). Therefore keeping constant the angle of attack at oc, in the easiest case

of two circular airfoils the degrees of freedom to be considered are 3: the distance between the centers xs,

and the position of the two trailing edges _s, _p. In such simple case the circulation (and the lift) is a 3

parameter manifold in a 6-dimensional space represcnted by the parameters (2.11). Therefore, in general we

can express all derivatives of the circulation as a combination of the derivatives of Eqs. (2.10) with respect

to the parameters (2.11).

Since w = a + #, to differentiate with respect to a or /3 implies differentiation with respect to the

semiperiod of the elliptic functions w. These derivatives are given in Section 2.2.

2.1.1. Derivative 0_.

0cs [
OCp = QL ap(Ap)
Oa 0.;

°_'(:'_)l [+ aw ]-Q_ go'(A_+2#)+

Q_ O_)(Ap + 23)
Ox

--= [ O{(A_)I [-p(A_+2#)+
OA_ -P(A_) + _
Oa O_ J

OAr _ 0_(Av) O¢(Ap + 2/3)

Oa Ow Ow

Derivative 0z.

(2.14)

oc_

OAs

o_
OAp

o#

Derivative

OC_ _Q. Op(A_) [ 0_(A_+23)]b-_ _ o_ q_ 2_'(_, + 2#) + _j

0/3 -QL -_o'(A,)+ Ow ]-Q°_ p'(Ap+2#)+ Ow

_ o_(_) [-2_(_+2#)+ o_(_+2#)1
ow L ow J

=_(_p)+ o¢(_)o_[P(_ +2#)+ o¢(_o_+2/3)]

oc_
=i * !oo_ [Q_¢ (_) - Q_¢'(_ + 2/3)]

OCp = 0

OA_

00_ - i[-p(A_) + _(_ + 2#)]

OAp _ 0



2.1.4. Derivative 0_p.

(2.15)

2.1.5. Derivative aiQ_i.

(2.16)

2.1.6. Derivative 0_o.

-0
OOv

ocp
OO_ - i[Q_°IV'(AP) - Qooiv'(Av + 2/3)]

OA_
-0

OO_

OAB _ i[-IV(Ap) + IV(Ap + 2fl)]
00s

0C_ C_

OtQ_l IVo_i
ocp cp

01Qool IQ_l

OA_
-0

alQ_l

OAp - 0
OlQool

ocs

oc,_

OA_

o_o

- i[Q_iv(As) + Q_IV(A_ + 2f_)]

- i[QLiv(Ap) + Qo_iv(3p + 2/3)]

1 o_(v)
(2.19) ¢(u) -- 2w O1(v) + 2_/v

I [tg_(O)t92(v)]2
(2.20) IV("U) = e I + _ LO=(O) ol!v)J

(2.17) OAp
0Z0

2.2. Derivative of the Weierstrass functions with respect to the period. When the geometric

configuration varies on the physical plane, the radii ri, r_ change as well. Therefore on the plane A the semi-

period w = a + f_ of the elliptic functions iv(u; w, _) and _(u; w, _;,) of Weierstrass varies when the geometric

configuration is changing. It follows that in the derivatives of Eqs. (2.12-2.13) with respect to a and _,

besides the partial derivatives of iv(u; w, 5:) and ((u; w, 5J) with respect to u, there appear the derivatives

with respect to w. For example, consider the derivative with resp_ct to a of IV(A_), appearing in O,_C_. Since

As = a + i_, we have

Oiv(u : a + iO_;w = a + j3,_ = iv:) Oiv(u;w,_) Ou cOp(u;w,&) Ow
= +

Oa Ou Oa Ow Oa

We mention in passing that

(2.18) C9_(u) _ iv(U), 0iv(U______)= ivt(u)
Ou Ou

On the contrary, the derivation of these functions with respect to the semi-period is not as easy.

It is convenient both for the computation and for the deriwttion to express _(u) and iv(u) in terms of

Jacobi zga (v) functions [5]:



with

(221) u• V = --

202

1 0_"(0)(2.22) -
1202 0_(0)

1 (_)2(2.23/ el = [o34(o)+ 01(0)]

where ' denotes derivation with respect to v. Jacobi O,_(v) functions can be cxpressed as

o_

01(v) = 2q¼ E(-1)nq n(n+l) sin[(2n + 1)Try]
n.=O

02(v) = 2q¼ _ qn(n+D eos[(2n + 1)Trv]
n=0

(3o

03(v) = 1 + 2 E qn= cos(2n_rv)
n=l

V_a(v) = 1 + 2 E(-1)nq n2 cos(2nTrv)
n=l

(2.24)

with

&
(2.25) q = e i_, T = --

03

The convergence rate of the series in Eqs. (2.24) is high when [02[ < [&] and Ira(T) > 0. It is always possible

to satisfy such conditions with a proper choice of the rectangle periods• Up to now we always assumed

02 = a +/3, o3 -- i_r, and hence the first condition is not always met. If it turns out that [021> [_b[, it is

possible to use the allowed transformations for the periods of elliptic functions (sec [5]), as the periods arc

not uniquely defined. In our case we can define new semi-periods & and & which are obtained from the

previous by means of a transformation of first order

(2.26) & ----&, _ = -w

so that the conditions mentioned are both satisfied•

Finally, we obtain

_ ttO_(u) _ 1 -J-2--_O, (v)
Ow 2QVql (v)

0'1(v ) [ j u r 001(v)]
L- 2-_01 (V) -f-2 O (v) a02 j

10i(v ) url) u O_I(2.27) +J 2_-2_)1(v) +w-2 +_O--w

Op(u) Oel [ J 00_(0) 1 002(0) 1 ]Oh.) -- 002 _'- 2(_9(U) -- el) --_ --_ 002 _qi(O) 002 02(0 ) +

j u , O02(v ) u t 001 (1")

(2.28) +2(_o(_t) -- el) - _02(v) q- 0----_ _ J'2-_ 01(v) + O_

O (v)

where £t = w = a-/3 and g = 1 if [w[ < [&], whereas _t = & = ir and J = 0 if [02[> I_[.



2.3. Differentiation of #(z). Let #(z) be the chain of transformations which leads from the plane of

the two adjacent circles z to #, the plane of the concentric circles. Keeping a0 and _Opfixed, the mapping

is uniquely defincd as a function of x, and _Os. We derive the parameters (2.11), keeping a fixed velocity at

infinity, with respect to x, and _Os. These derivatives involve a, b, ri and re. It is ri = #(-1), r_ = #(xs -t-r,).

(2.29) _-x, -- b x_ --r-_-+ 1 x'_

0C

(2.30) Ox,

cgb
(xs-b)(1- ---)

OX,;

Ob 0c Ob 0c

Oa 1- _ + _ 1 Oxs Ox,

(2.31) Oxs x, + rs - b + c Xs + % - b- c

(2.32)
Ox s

Ob 0c Ob 0c

Ox, Oxs + Ox, Ox,
c-b-1 c+b+l

(2.33)
00,

OXs Ob 0c

(OA_ 1 - _-_x_ + O-_-x_

Ob 0c I

1 OXXs OXs

Z-s :b-c

(2.34) ob Ob+Oc 
Ox, \ OXs ] =Ira c - b + zp )

(2.35)

whereas

(rs(- sin_v, + icos_s) _ r,(- siu_vs + i cos_,)Im
\ _ -i77 -,_--g-- _ )

Oa 03 OOp
(2.36) -- --00, 00_ 00_ - 0

2.4. Circulation manifold. As we change x, and 0, there are four remarkable situations. The lift may

asymptoticaly increase or decrease with increasing distance between the two circles. In addition there may

be a local maximum, or a local minimum. The variation of 0, dc.es not give rise to any interesting change in

the shape of the manifold, except in Fig. 2.10 where a local maximum of the circulation with respect to 0, is

shown. The different behaviors are due to the interplay between the radius of the secondary circle and Op, as

it is shown in the following figures. This is basically the reason for which this test case may be interesting:

gradient based method would be not able to exit a local minima, whereas genetic algorithms can, see for

example [7] . The case shown in Figs. 2.4-2.5 is for a secondary circle of radius rs = 0.2, 0p = -10 °, a0 = 10 °,

1.3 <_ x, <_ 6.3, -10 ° < O, <_ 10 °. Each of these intervals is divided in 20 segments and the circulation and



its derivatives are evaluated at every resulting grid point. For this configuration lift is increasing with the

distance, whereas in the case of Figs. 2.6-2.7 lift is decreasing with distance (rs = 0.6, _p = 30 °, O_0 : 10 °,

1.6 _< x_ < 6.6, -30 ° < Os < 30°). In these figures and in the following the results are presented with respect

to the grid points rather than explicitly with respect to the variable relative to the axis.

In Figs. 2.8-2.9 it is shown how with a proper choice of the parameters it is possible to obtain a local

minimum (r8 = 0.05, 8p -- -30, c_) = 10, 1.15 _< xs <_ 6.15, -30 ° < 0_ < 30°). In contrast, with rs -- 0.05,
o

0p = 30, a_ = 10, 1.15 < x_ < 6.15, -30 ° < 8s __ 30°; we have a local maximum, with respect to both x_

and Os (see Figs. 2.10- 2.12).

We limited ourself to the explicit computation of the derivatives with respect to x_ and 88 in order to

present conveniently the results and to keep a link with real world applications where these are basically

the parameters to be varied. It is straight forward, using the derivatives of the elliptic functions, that we

evaluate in the sections before, to determine the differential with respect to any other geometrical quantity

on the plane of the adjacent circles.
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FIG. 2.4. Circulation as a function of xs (xs) and Os (ths): the circulation increases unth xs.

3. The Theodorsen-Garrik transform revisited. Here we adapt the Theodorsen-Garrik transform

as proposed by Ives [6], in order to differentiate it by divided differences.

Our scope is to transform the domain exterior to two adjacent airfoils (see Fig. 3.1) on the plane zl,

into the region bounded by two concentric circles on the plane zc. Let us first transform the primary profile

into a nearly circular region by the Karman-Trefftz transform

(Z]_ZTp_ r __ _-- 1(3.1) - zNp/ ¢ + 1

with 7 = _:/(2_r - 6p), 5p being the trailing edge angle of the primary profile, ZTp is its location, and ZNp is

a point in the vicinity of the leading edge, inside the airfoil. By the Theodorsen transform the quasi circle

on ( is mapped onto a unit circle on z

oo

(3.2) ¢ = z exp{E[(a j + ibj)z-J]}

j=O
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FIG. 2.6. Circulation as a function of xs and Os: the (irculation decreases with xs.

The coefficients aj and bj of the suitably truncated series in Eq. (3.2) are iteratively found by an FFT,

imposing that the points of the unit circle on z are mapped on the border of the nearly circular domain on

_. For the details see [6].

The sequence of mappings that transformed the primary prolile into a unit circle acted on the secondary

profile as well. Yet, the tangent discontinuity at the trailing edge of the secondary profile is still there,

therefore it is necessary to map the plane z so that the unit circle is unchanged and the image of the

secondary profile is mapped onto a quasi circle. This is done by

(z .-(3.3) _ - _g _ - 1/_v ZN, z :-- 1/ZN_]

where r = rr/(27r - 5s), 5s being the trailing edge angle of the secondary profile, ZTs is the location on the

plane z, and ZNs is a point inside the secondary profile in the vicinity of the leading edge. The constants _T

10
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FIG. 2.8. Circulation as a function of x8 and Os: the circulation has a local minimum.

and _N are found as follows. Let

(3.4)

and

(3.5)

z - zr, z - 1/z_s ) rf(z)= z Zg_ z 1/Z*Ns

g(_) - - _T _ - 1/¢_

- ,_N C _ 1/__

The mappings f(z) and g(_) have the singularities df/dz = dg/d_ -- 0 for f(zN_) = g(_N) and f(ZT_) =

g(_T). These equations were solved iteratively in [6], whereas we found that they can be solved in a closed

form.

At last, by the Theodorsen-Garrik transform it is possible to map _ on two concentric circles on the

11
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FIG. 2.10. Circulation as a function of x, and Os: the cireulation has a local maxtmum.

plane zc:

OO

(3.6) ( = zc exp{Z[(-a _ + ib;)(nzc) -j + (a'j + ib'j)(R/zc)-J]}
j=0

where Zc = Rcxp(iO). The radius R and the coefficients a_ and b_ are obtained by a trial and error process

based on an FFT, as for Eq. (3.2). For example in Fig.(3.2-3.3) the pressure isolines and the streamlines,

relative to the flow around two wing sections computed by this method, is presented.

3.1. Divided differences derivative. The set of transformations we described in the previous section

is not easily differentiated exphcitly, since the Theodorsen tranfo:rm and the Theodorsen-Garrick transform

are defined implicitly, and the coefficients are determined by an iterative process. For this reason we decided

to differentiate the mapping from the physical plane to the plane of the concentric circles by divided differ-

ences. Then, we used the results of the analytic differentiation of Section 2 in order to compute the gradient

12
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FIG. 2.12. Derivative of the circulation with respect to 0_.

of the circulation with respect to the three parameters which define the position of the flap with respect to

the main airfoil in the physical space, i.e., (X_, Ys) the location of the leading edge of the flap and {9 its

angle of attack.

As we mentioned in Section 2, all of the variables (2.11) defining the solution on the plane of the adjacent

circles with focal points in +1 are functions of Xs, Ys and (9. We computed the derivative of such functions

by divided differences: for example we gave a small increment to X8 and evaluate the increments of the

variables (2.11) by means of thc chain of mappings described in the section above. The differential is then

obtained as the ratio between the increments of variables (2.11) and thc increment in Xs.

As an example, we present the results obtained for the case of two adjacent NACA-0012 airfoils. The

incidence of the flow at infinity is 10 degrees and the chord of the flap is 1/10 the chord of the main airfoil;

also, the range for X_, Y_ and 1 < X_ < 1.3, -0.1 < Ys <_ 0.1 and O is and -5 < {9 _< -2. These intervals

13
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FIC. 3.2. Pressure field.

are subdivided on a mesh of 10 points. As it is seen in Fig. 3.4, there exist a non-monotone region of the

circulation manifold. The circulation isosurfaces are plotted for increasing values of lift from top to bottom

(0.71 to 0.74). In Fig 3.5 the gradient is shown with respect to O computed as explained in the present

section. The gradient values of the plotted isosurfaces range from 0 to 8 - 10 -3 from left to right.

The features of the circulation manifold are influenced by 1he dimension of the flap as well as by the

incidence of the flow at infinity. An abundance of different behaviors may be obtained changing these

parameters, as in the two adjacent circles case.

4. Conclusions. We presented two optimization test cases. The first concerns the computation of

the circulation functional for two adjacent circles, when the relative position and the trailing edge of the

secondary circle are varied. The gradient with respect to those variables was computed analytically and

results have been presented for several geometrical configurations.
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The second test case was related to the computation of the circulation functional for two adjacent airfoils,

as the secondary airfoil is displaced. Since the mappings involved to compute the theoretical solution are

defined implicitly, we decided to compute the gradient of such transformations by divided differences. Results

showing the nature of the circulation manifold were presented.

In summary, it was shown that the space of solutions for such problems include non trivial situations of

local minima and maxima. Such richness of behaviors and the relativcly complicated geometrical optimiza-

tion, which in the case of numerical solution involves remeshing and accurate definition of the gradient for

moving boundaries, should be an interesting feature to test optimization algorithm of diffcrent nature.

The codes developed for this study are available at ICASE - NASA Langley Research Center, Hampton,
VA.

15



10
D-X

7.

5

2

0

i0

i0

FIG. 3.5. Gradient isosurfaces. Gradient values from 0 to 8 • 10 3 from left tO right.
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